Studies in the Phenanthrene Series. VIII. Amino Alcohols Derived from 1,2,3,4,5,6,7,8-Octahydrophenanthrene ${ }^{1}$

By Jacob van de Kamp and Erich Mosettig

Pharmacological investigations ${ }^{2}$ have shown that some of the phenanthrene derivatives with the side chain $-\mathrm{CHOHCH}_{2} \mathrm{~N}=3$ and $-\mathrm{CHOHCHN}={ }^{4}$ exhibit in the cat a certain resemblance to morphine. Since the fundamental hydrocarbon skeleton of morphine is a hydrogenated phenanthrene nucleus, the synthesis of hydrogenated phenanthrene derivatives carrying these alkamine side chains has been undertaken in the hope of attaining still more active compounds.

Among the known partially hydrogenated phenanthrenes the $1,2,3,4,5,6,7,8$-octahydrophenanthrene or "octanthrene" 5 appears especially convenient as starting material for the introduction of substituents. By the Friedel and Crafts reaction with chloroacetyl chloride the 9 -ω-chloroacetyloctanthrene of Schroeter ${ }^{5}$ can be prepared, in which, however, the halogen atom reacts with secondary amines only slowly. Therefore we prepared the ω-bromoacetyl derivative by bromination of 9 -acetyloctanthrene. The bromine is easily exchanged for the dimethylamino, diethylamino and piperidino groups. Attempts to prepare in the same way, with monomethyland monoethylamine, the secondary amino ketones were without results. The primary amino ketone is obtained by the reduction of isonitsosoacetyloctanthrene with stannous chloride. In an analogous way, the corresponding homologous amino ketones were prepared from 9 -propionyloctanthrene. The exchange of the α-bromine atom with the monomethylamino and monoethylamino group in α-bromopropionyloctanthrene proceeds very well, quite in contrast to the corresponding experiments with ω-bromoacetyloctanthrene.
(1) The work reported in this paper is part of a unification of effort by a number of agencies having responsibility for the solution of the problem of drug addiction. The organizations taking part are: The Rockefeller Foundation, the National Research Council, the U. S Public Health Service, the U. S. Bureau of Narcotics, the University of Virginia and the University of Michigan.
(2) Nathan B. Eddy, unpublished results.
(3) (a) Mosettig and van de Kamp, This Journai, 65, 3448 (1933); (b) Burger and Mosettig, ibid., 56, 1745 (1934).
(4) Mosettig and Czerwin, unpublished results.
(5) Schroeter, Ber., 67, 2025 (1924). The trivial name proposed by Schroeter will be used as a convenient abbreviation.

The catalytic reduction of the amino ketones to the corresponding amino alcohols does not offer any difficulties. Of the propanolamines apparently only one of the possible diastereomeric forms was obtained. Acetyl- and propionyloctanthrene yield on oxidation with sodium hypochlorite the acid known as octanthrene-9-carboxylic acid. This acid is identical with that obtained by catalytic reduction of phenanthrene-9carboxylic acid. The hitherto assumed 9 -position of the carboxyl group in octanthrene-9carboxylic acid, as well as the position of the chloroacetyl, acetyl and propionyl groups in the octanthrene derivatives here described, is thus demonstrated.

Table I gives a summary of the reactions and compounds dealt with in this paper. It is intended to attempt the preparation of analogous amino alcohols derived from 9,10-dihydro-, 1,2,3,4-tetrahydro- and $1,2,3,4,9,10,11,12$-octahydrophenanthrene.

We are indebted to Mr. Lyon Southworth of this Laboratory for many of the analyses appearing in this paper.

Experimental

Preparation of $1,2,3,4,5,6,7,8$-Octahydrophenanthrene.Three hundred and fifty-six grams (2 moles) of phenanthrene, ${ }^{6} 40 \mathrm{cc}$. of dry decahydronaphthalene ${ }^{7}$ and 10 to 12 g . of Raney nickel catalyst ${ }^{8}$ were heated, with constant shaking, in a hydrogen atmosphere at 120° under an initial pressure varying from 1600 to 2100 lb ., in the apparatus (contents 750 cc .) described by Adkins and Cramer. ${ }^{9}$

Hydrogen absorption started at 120°. From two to eight days were required for absorption of the amount of hydrogen necessary for the formation of octahydrophenanthrene. Every two days a fresh amount of 10 to 12 g . of catalyst was added. The end of the reduction was evident by a marked drop in the rate of hydrogen absorp-

[^0]Table I

tion. ${ }^{10}$ After removal of catalyst and solvent, the reduction product was distilled in an oil pump vacuum and then purified through the sodium sulfonate according to Schroeter. ${ }^{5}$ The regenerated hydrocarbon was rectified, b. p. $179-180^{\circ}\left(20 \mathrm{~mm}\right.$.), $n^{17 \mathrm{D}}$ 1.5669. ${ }^{11}$ Cooled in ice, it readily erystallized to a mass of colorless needles. ${ }^{12}$ In our experiments the yield varied from 70 to 85%, the better yield being obtained at the lower temperature (120°).
Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18}: \mathrm{C}, 90.25 ; \mathrm{H}, 9.75$. Found: C, $90.31 ; \mathrm{H}, 9.66$.
Friedel and Crafts Reactions.-For the preparation of 1,2,3,4,5,6,7,8-octahydrophenanthrene-9-carboxylic acid, $9-\omega$-chloroacetyl-, 9 -acetyl- and 9 -propionyl-1,2,3,4,5,6,7,8 -octahydrophenanthrene, the Friedel and Crafts reaction was applied to $1,2,3,4,5,6,7,8$-octahydrophenanthrene.
To a solution of 1 part of $1,2,3,4,5,6,7,8$-octahydrophenanthrene in 10 parts of carbon disulfide, cooled to -15°, the acid chloride ${ }^{13}$ was added, and 2 moles of alu-

[^1]minum chloride was added in small portions in the course of one hour. After this, stirring was continued for five more hours and the temperature maintained at -15°.

The yields of the acid, chloroacetyl-, acetyl- and pro-pionyl- derivative were $87,89,98.5$ and 97%, respectively. The acid gave no depression in melting point when mixed with a sample of the acid which results from saponification of the product formed by catalytic reduction (4 moles of hydrogen) of phenanthrene-9-carboxylic acid ethyl ester with platinum in glacial acetic acid.

Oxidations of both 9 -acetyl- and 9 -propionyl-1,2,3,4,-$5,6,7,8$-octahydrophenanthrene with a 2% sodium hypochlorite solution gave $1,2,3,4,5,6,7,8$-octahydrophenan ${ }^{-}$ threne-9-carboxylic acid. This acid and its methyl ester gave no depression in melting points with samples of the acid mentioned above, and its methyl ester, respectively.

The ketones were brominated ${ }^{14}$ to the $9-\omega$-bromoacetyland $9-\alpha$-bromopropionyl- $1,2,3,4,5,6,7,8$-octahydrophenanthrene, respectively. The bromine atom in these bromo ketones was exchanged with primary and secondary amines, to form secondary and tertiary amino ketones. From 9 -acetyl- and 9 -propionyl-1,2,3,4,5,6,7,8-octahydrophenanthrene the isonitroso derivatives ${ }^{15}$ were prepared

[^2]Table II

Table II (Concluded)

Derivatives of 1,2,3,4,5,6,7,8-Octahydrophenantbrene	Solvent	Appearance ${ }^{\text {a }}$	M. p., ${ }^{\circ} \mathrm{C}$.	Formula	Carbon, \% Calcd. Found		Hydrogen, \% Calcd. Found		Nitrogen, \% Caled. Found		Halogen, \% Caled. Found		
$\underset{n \text {-propyl-* }}{\substack{\text { 9-(2-Piperidino-1-hyd }\\}}$	droxy)EtOH	Plates	126.5-127.5	$\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{ON}$		80.95		10.24					
-Hydrochloride	EtOH	Prisms	235-236	$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{ONCl}$					3.85	4.04	Cl,	9.75	9.95
9-(2-Methylamino-1-oxo)-propyl-* hydrochloride ${ }^{j}$	$\underset{\text { ether }}{\text { EtOH }}+$	Prisms	223-224.5	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{ONCl}$					4.55	4.70			
-Picrate	EtOH	Plates	192-193 dec. ${ }^{k}$	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}_{4}$					11.20	11.18			
$\begin{gathered} 9-(2-\text { Methylamino-2 } \\ n \text {-propyl-* } \end{gathered}$	-hydroxy)- EtOH	Prisms	129.5-130	$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{ON}$	79.06	79.04	9.96	9.84					
-Hydrochloride	$\begin{gathered} \text { EtOH }+ \\ \text { ether } \end{gathered}$	Diamonds	218-219	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{ONCl}$								11.45	11.45
-Picrate	EtOH	Plates	179-180	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~N}_{4}$					11.16	11.31			
9-(2-Ethylamino-1-oxo)-propyl-* hydrochloride ${ }^{j}$	$\underset{\text { ether }}{\text { EtOH }}+$	Plates	226-228	$\mathrm{C}_{1} \mathrm{HH}_{23} \mathrm{ONCl}$					4.85	4.53			
-Picrate	EtOH	Blades	163-164	$\mathrm{C}_{26} \mathrm{H}_{80} \mathrm{O}_{8} \mathrm{~N}_{4}$					10.90	10.95			
$\begin{gathered} 9 \text {-(2-Ethy lamino-1-hy } \\ n \text {-propyl-** } \end{gathered}$	hydroxy)-	Prisms	124.5-125	$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{ON}$	79.38	79.52	10.18	10.33					
-Hydrochloride E	$\underset{\text { ether }}{\mathrm{EtOH}}+$	Rectangular plates	118-119	$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{ONCl}$					4.33	4.22		10.95	10.96

${ }^{a}$ All substances are colorless, with the exception of the picrates which are all yellow. ${ }^{b}$ Turns brown at 225°.
${ }^{c}$ The exchange of the bromine atom with the amine was effected in ethereal solutions as described in a previous paper, see reference 3a. ${ }^{d}$ Sinters at 226°. ${ }^{\text {b }}$ Sublimed at 0.01 mm . ${ }^{\text {b }}$ Sinters at 223°. ${ }^{d}$ Sinters at 180°. ${ }^{h}$ The free base is oily. ${ }^{i}$ Distilled at 0.01 mm . ${ }^{i}$ The exchange of the bromine atom with the amine was effected by heating a solution of the bromo ketone in dry benzene with the amine in a pressure flask at $50-55^{\circ} .{ }^{k}$ Sinters at 189°.
according to Claisen and Manasse ${ }^{18}$ and were reduced to the corresponding amino ketones with stannous chloride and concentrated hydrochloric acid in the presence of a trace of tin. ${ }^{17}$
The exchange of the bromine atom in ω-bromoacetyl-$1,2,3,4,5,6,7,8$-octahydrophenanthrene with primary amines has so far failed to give any satisfactory results.
All the amino ketones were reduced catalytically with platinum oxide in ethyl alcohol, either as the free base or preferably as the hydrochloride, to the corresponding amino alcohols. ${ }^{18}$
In Table II the data concerning these compounds are presented. In order to avoid frequent repetition of the

[^3]name $1,2,3,4,5,6,7,8$-octahydrophenanthrene, it is indicated by *.

Summary

The preparation of a series of amino alcohols derived from 1,2,3,4,5,6,7,8-octahydrophenanthrene is described. From 9 -acetyl-1,2,3,4,5,6,-7,8-octahydrophenanthrene derivatives carrying the side chain $-\mathrm{CHOHCH} \mathrm{NR}_{2}\left(\mathrm{NR}_{2}\right.$ being the amino, dimethylamino, diethylamino, or piperidino group) are obtained. From 9 -propionyl-1,2,3,4,5,6,7,8-octahydrophenanthrene, derivatives with the side chain $-\mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right) \mathrm{NR}_{2}$ (NR_{2} being the amino, dimethylamino, diethylamino, piperidino, monomethylamino, or monoethylamino group) are obtained.
University, Va.
Received April 13, 1935

[^0]: (6) The phenanthrene used in these reductions was a product purified according to Cohen and Cormier, This Journal, 52, 4363 (1930), subsequently heated with sodium at 200° for two hours, and finally distilled.
 (7) Moset tig and van de Kamp, ibid., 65,2996 (1933), footnote 10.
 (8) This catalyst was prepared according to directions of Covert and Adkins, ibid., 54, 4116 (1932). It was then washed with absolute ethyl alcohol and subsequently with decahydronaphthalene until the latter showed no turbidity. The nickel was kept under dry decahydronaphthalene.
 (9) Adkins and Cramer, ibid., 52, 4349 (1930).

[^1]: (10) At temperatures of 140° a satisfactory yield of octabydrophenanthrene was obtained in a shorter time. At 150° the yield was considerably smaller due to the formation of higher hydrogenated products. At 175° only higher hydrogenated products were formed.
 (11) Auwers, $A n n ., 430,259$ (1930), measured $n^{20}{ }^{\mathrm{D}} 1.5688$ on Schroeter's product.
 (12) Schroeter gives the m. p. as 16.7°.
 (13) In the case of acetyl-, propionyl- and chloroacetyl chloride, a 10% excess was used, with oxalyl chloride, 100% excess. Schroeter, in the preparation of ω-chloroacetyloctanthrene, heated the hydrogarbon with the acid çloride and a trace of phosphorus pentoxide.

[^2]: (14) The bromination was carried out in absolute ether as described previously (see reference 3a).
 (15) The yield of the isonitroso derivatives varied between 30 and 50% of the theoretical.

[^3]: (16) Claisen and Manasse, Ber., 20, 2194 (1887).
 (17) Rupe, ibid., 28, 251 (1895); Mills, J. Chem. Soc., 1567 (1934).
 (18) The method of preparing the secondary and tertiary propanolamines in this series is in principle the same as that first applied by Eberhard, Arch. Pharm., 253, 62 (1915), more recently by Hyde, Browning and Adams, This Journal, 50, 2287 (1928) in the preparation of ephecrine and its homologs.

